糖酵解 编辑

所有生物体进行葡萄糖分解代谢所必须经过的共同阶段
糖类最主要的生理功能是为机体提供生命活动所需要的能量。糖分解代谢是生物体取得能量的主要方式。生物体中糖的氧化分解主要有3条途径:糖的无氧氧化、糖的有氧氧化和磷酸戊糖途径。催化糖酵解反应的一系列酶存在于细胞质中,因此糖酵解全部反应过程均在细胞质中进行。糖酵解是所有生物体进行葡萄糖分解代谢所必须经过的共同阶段。2019,研究发现,肿瘤细胞会出现不同于正常细胞的代谢变化,同时肿瘤细胞自身可通过糖酵解和氧化磷酸化(OXPHOS)之间的转换来适应代谢环境的改

基本信息

编辑

中文名:糖酵解

外文名:glycolysis

生物化学:无氧呼吸作用萄糖

阶段:活化阶段和放能阶段

物质概述

编辑

生物在无氧条件下,从糖的降解代谢中获得能量的途径,也是大多数生物进行葡萄糖有氧氧化的一个准备途径。在此过程中,六碳的葡萄糖分子经过十多步酶催化的反应,分裂为两分子三碳的丙酮酸,同时使两分子腺苷二磷酸(ADP)与无机磷酸(Pi)结合生成两分子腺苷三磷酸(ATP)。

丙酮酸的进一步代谢,因生物种属的不同以及供氧情况的差别而有不同的路。例如在无氧情况下,强烈收缩的动物肌肉细胞中,丙酮酸还原为乳酸,在许多微生物中可分解为乙醇或乙酸;在有氧情况下,则氧化成二氧化碳和水。

糖酵解反应过程

糖酵解过程是从葡萄糖开始分解生成丙酮酸的过程,全过程共有10步酶催化反应。

1.葡萄糖磷酸化

糖酵解第一步反应是由己糖激酶催化葡萄糖的C6被磷酸化,形成6-磷酸葡萄糖。该激酶需要Mg2+离子作为辅助因子,同时消耗一分子ATP,该反应是不可逆反应。

2.6-磷酸葡萄糖异构转化为6-磷酸果糖

这是一个醛糖-酮糖同分异构化反应,此反应由磷酸己糖异构酶催化醛糖和酮糖的异构转变,需要Mg2+离子参与,该反应可逆。

3.6-磷酸果糖磷酸化生成1,6-二磷酸果糖

此反应是由磷酸果糖激酶催化6-磷酸果糖磷酸化生成1,6-二磷酸果糖,消耗了第二个ATP分子。

4.1,6-二磷酸果糖裂解

在醛缩酶的作用下,使己糖磷酸1,6-二磷酸果糖C3和C4之间的键断裂,生成一分子3-磷酸甘油醛和一分子磷酸二羟丙酮。

5.3-磷酸甘油醛和磷酸二羟丙酮的相互转换

3-磷酸甘油醛是酵解下一步反应的底物,所以磷酸二羟丙酮需要在丙糖磷酸异构酶的催化下转化为3-磷酸甘油醛,才能进一步酵解。

6.3-磷酸甘油醛的氧化

3-磷酸甘油醛在NAD+和H3P04存在下,由3-磷酸甘油醛脱氢酶催化生成1,3-二磷酸甘油酸,这一步是酵解中惟一的氧化反应。

7.1,3-二磷酸甘油酸转变为3-磷酸甘油酸

在磷酸甘油酸激酶的作用下,将1,3-二磷酸甘油酸能磷酰基转给ADP形成ATP和3-磷酸甘油酸。

8.甘油酸-3-磷酸转变为甘油酸-2-磷酸

在磷酸甘油酸变位酶催化下,甘油酸-3-磷酸分子中C3的磷酸基团转移到C2上,形成甘油酸-2-磷酸,需要Mg2+离子参与。

9.甘油酸-2-磷酸转变为磷酸烯醇式丙酮酸

在烯醇化酶催化下,甘油酸-2-磷酸脱水,分子内部能量重新分布而生成磷酸烯醇式丙酮酸烯醇磷酸键,这是糖酵解途径中第二种高能磷酸化合物。

10.丙酮酸的生成

在丙酮酸激酶催化下,磷酸烯醇式丙酮酸分子高能磷酸基团转移给ADP生成ATP,是糖酵解途径第二次底物水平磷酸化反应,需要Mg2+和K+参与,反应不可逆。

糖酵解调节

正常生理条件下,人体内的各种代谢过程受到严格而精细的调节,以保持内环境稳定,适应机体生理活动的需要。这种调节控制主要是通过改变酶的活性来实现的。己糖激酶(葡萄糖激酶)、磷酸果糖激酶-1、丙酮酸激酶是糖酵解的关键酶,它们的活性大小,直接影响着整个代谢途径的速度和方向,其中以磷酸果糖激酶-1最为重要。

1.激素的调节胰素可诱导GK、PFK-1、PK的合成,因而使糖酵解过程增强。

2.代谢物对限速酶的变构调节磷酸果糖激酶-1(PFK-1)是三个限速酶中催化效率最低的,故而是糖酵解途径中最重要的调节点。该酶分子为四聚体。分子中不仅具有与底物结合的部位,还具有与变构激活剂和变构抑制剂结合的部位。F-1,6-BP、ADP、AMP等是其变构激活剂,而ATP、柠檬酸等为其变构抑制剂。在这些代谢物的共同调节下,机体可根据能量需求调整糖分解速度。当细胞内能量消耗增多,ATP浓度降低,AMP、ADP浓度增加,则磷酸果糖激酶-1被激活,糖分解速度加快,使ATP生成量增加;当细胞内有足够的ATP储备时,ATP浓度增加,AMP、ADP浓度下降,磷酸果糖激酶-1被抑制,糖分解速度减,减少ATP生成量,避免能量的浪费;当饥饿时,机体动员储存脂肪分解氧化,生成大量乙酰CoA,乙酰CoA可与草酰乙酸缩合成柠檬酸,抑制磷酸果糖激酶-1的活性,从而减少糖的分解,以维持饥饿状态下血糖浓度。

糖酵解反应特点

1.糖酵解反应的全过程没有氧的参与。

2.糖酵解反应中释放能量较少。糖以酵解方式进行代谢,只能发生不完全的氧化。

3.糖酵解反应的全过程中有3个限速酶。在糖酵解反应的全过程中。有三步是不可逆反应。这三步反应分别由己糖激酶、6-磷酸果糖激酶-1、丙酮酸激酶3个限速酶催化。

糖酵解生理意

糖酵解可以把释放的自由能转移到ATP中。糖酵解也是果糖、甘露糖、半乳糖等己糖的共同降解途径。果糖及甘露糖通过己糖激酶的催化作用可转变成果糖-6-磷酸,果糖还可以通过一系列酶的作用转变成3-磷酸甘油醛。半乳糖可以在一些酶催化下转变成1-磷酸葡萄糖。有些先天性代谢疾病是由于上述果糖与半乳糖代谢中的某些酶缺失所致。如缺失磷酸果糖醛缩酶,则果糖-1-磷酸在肝、肠及肾中堆积引起肝肿大及肝肾及肠吸收功能衰退,患这种病的儿童不能服用果糖或蔗糖。

糖酵解能量转化

平衡点

值得一提的是,生成1,6-二磷酸果糖后的大部分反应都是向能量升高的方向进行的,没有酶(磷酸果糖激酶(PFK),磷酸甘油酸激酶(PGK))的催化,是不会自发进行的。而糖酵解的逆过程--糖异生(从甘油等非糖物质生成葡萄糖)则容易进行,此过程用到大部分在糖酵解里面出现过的酶,除了提到的两位“车夫外,它们只出现在糖酵解中。在糖异生这两步逆反应会放出大量的热,分别为-14及-24kJ/mol。

无氧环境和有氧环境

在糖酵解中,每分子葡萄糖提供两分子ATP。真核生物的线粒体能同时从两分子丙酮酸中另外获得36分子ATP。能量转化的多少取决于在细胞质中产生的NADH+H通过线粒体膜的方式。不在无氧还是有氧环境中,糖酵解成丙酮酸这一过程都能进行。3-磷酸甘油醛在3-磷酸甘油醛脱氢酶GAPDH的作用下脱氢。脱下的氢离子会将氧化剂(辅酶)NAD还原成NADH+H。NAD会在呼吸链中再生。若在无氧环境,放热的(ΔG´=-25kJ/mol)乳糖脱氢酶(LDH)反应会再生NAD:丙酮酸的还原会生成乳糖和再生NAD(酵母则会使用另外两种酶—丙酮酸脱羧酶加乙醇脱氢酶)。

无氧环境下糖酵解GAPDH-和LDH-反应的相互联系,除了少部分NADH+H会被磷酸甘油脱氢酶(GDH)转化外,大部分会用于再生NAD。

糖酵解重要性

6-磷酸果糖激酶-1>丙酮酸激酶>己糖激酶

ATP/AMP比值的高低对6-磷酸果糖激酶-1活性的调节有重要意义。当ATP浓度较高时,6-磷酸果糖激酶-1几乎无活性,糖酵解作用减弱;当AMP累积,ATP较少时,酶活性恢复,糖酵解作用加强;此外,H+也可抑制6-磷酸果糖激酶-1的活性,这样可防止肌肉中形成过量的乳酸。

糖酵解发现

1897年,德国生化学家E.毕希纳发现离开活体的酿酶具有活性以后,极大地促进了生物体内糖代谢的研究。酿酶发现后的几年之内,就揭示了糖酵解是动植物和微生物体内普遍存在的过程。英国的F.G.霍普金斯等于1907年发现肌肉收缩同乳酸生成有直接关系。英国生理学家A.V.希尔,德国的生物化学家O.尔霍夫、O.瓦尔堡等许多科学家经历了约20年,从每一个具体的化学变化及其所需用的酶、辅酶以及化学能的传递等各方面进行探讨,于1935年终于阐明了从葡萄糖(6碳)转变其中乳酸(3碳)或酒精(2碳)经历的12个中间步骤,并且阐明在这过程中有几种酶、辅酶和ATP等参加反应。

糖酵解临床意义

1.糖酵解是机体相对缺氧时生理获得能量的主要途径。生物体在进行剧烈运动或长时间运动时,能量需求增加,糖酵解加速,此时即使呼吸和循环加快以增加氧的供应,仍不能满足需要,肌肉处于相对缺氧状态,必须通过糖酵解提供急需的能量。

2.糖酵解是某些组织在有氧时获得能量的有效方式,糖酵解是成熟细胞获得能量的惟一方式。也是神经、白细胞、骨髓等组织细胞在有氧情况下获得部分能量的有效方式。

3.在病理情况下,如呼吸或循环功能障碍、严重贫血、大量失血等造成机体缺氧时,导致糖酵解加速甚至过度,可因乳酸产生过多,造成乳酸酸中毒。